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Introduction

Recent developments in cognitive science have emphasized the necessity to
see cognition as a phenomenon which emerges from the ongoing interac-
tion between the environment, body and brain (Brooks, 1991; Varela et
al. 1991; Hutchins, 1995; Clancey, 1997; Clark, 1997). In part due to
the unsatisfactory theoretical and experimental accounts given by computa-
tional approaches, this revival is also driven by the extraordinary advances
made in the domain of related psychological and biological disciplines such
as psycholinguistics, cognitive psychology, neuroscience, evolutionary and
developmental sciences, etc. Indeed, by exploring the environmental and
bodily processes that play a constitutive role in cognition our theories may
sufficiently mature so to make visible the fundamental principles behind
intelligent behaviour. In particular, it is increasingly apparent that the
high complexity of the environmental/body/brain transaction will require a
sufficiently sophisticated framework to explain both simple stimuli induced
reactions or thoughts as well as complex continuous mindful behaviours. It
should be useful then to adopt a program that sets focus on some of the
fundamental solutions found by nature to accomplish this: neural coding.

The present paper aims to address two central questions. What are the
known constitutive processes of the brain? How can we test their applica-
bility to real world problems? From the pioneering histological observations
made by Ramon-y-Cajal in the late 1800’s to the advent of sophisticated
brain imaging techniques we have gained a tremendous body of knowledge
regarding the role played by the nervous system in cognition. These break-
throughs have stimulated a number of theoretical perspectives on the func-
tional properties of brain structures. In particular early perspectives have
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postulated that neural integration of spike train frequencies is the central
encoding mechanism of the brain (Hebb 1949; Barlow 1972). More recently
alternative coding mechanisms have been postulated to take place as a result
of intricate spatiotemporal properties of neural cell firings (Von der Malsburg
1981). Although increasing experimental evidence suggests that spatiotem-
poral coding takes place throughout the brain, our understanding of their
precise nature is still poor. Furthermore, little direct behavioural evidence
that such spatiotemporal codes are important for intelligent behaviour ex-
ists. In the following I will begin by reviewing the dominant rate coding
paradigm as interpreted by the neurosciences. I will expose its strengths
and weaknesses in order to motivate the idea that other brain mechanisms
may be at work. The alternative spatiotemporal coding paradigm will then
be introduced. This will be complemented by a brief exploration of the theo-
retical issues this alternative coding scheme may address as well as empirical
evidence of its presence in the mammalian brain based on both biological and
simulated results. A proposal for its investigation will then be developed.
In particular, I will argue in favour of the evolutionary robotics approach
as a framework suitable for the identification of spatiotemporal mechanisms
and their involvement in embodied cognition.

Rate Coding and Beyond

Since early recordings of neurone activity the dominant view of information
coding in the brain sees rates of neural firing as the sole neural mechanism
underlying perception, thought and action. Typically experimental record-
ings have focussed on the activity of cells over several hundred millisecond
time scales. This has made possible the correlating of statistical firing rates
with psychological performances. This view has been strongly supported by
work on motor neurone activity where firing rates were found to have a clear
correspondence with muscle flexion (Robinson 1975; Shidara et al. 1993).
Shidara et al. for instance have shown that the high frequency of firing of
Purkinje cells in the cerebellum allows the cells to behave as integrators of
spike numbers where firing rate modulations control eye positions and ac-
celerations (Shidara et al. 1993). Two distinct perspectives take rate coding
as the central means for information coding in the nervous system: place
coding and distributed coding.

First, the place coding view sees information as being encoded by a single
cell’s mean spike rate over a particular psychological time during an exper-
iment (Barlow 1972). This notion is characterized by the interpretation of
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cell function based on both their objective meaning: the spatial location
of the firing cell, and subjective meaning: the rate of cell firing (Kruger
and Becker 1991; Fujii et al. 1996). Here firing rates are averaged over
the duration of psychological experiments which often last several hundred
milliseconds. Furthermore, experiments are adjusted to elicit maximum fir-
ing rates of the recorded cells. From this view the functional role of a cell
is inferred from an optimum stimulus: a stimulus that elicits a maximum
average firing rate. Place coding thus motivates the hypothesis that subor-
dinate cells transmit their signals to grandmother cells. These grandmother
cells are thus understood to be feature specific and that they must play a
central role in pattern detection or action initiation. Face recognition cells
for instance have been hypothesized to reside in the inferotemporal (IT) lobe
(Rolls et al. 1990). Also in IT an icon alphabet is claimed to be implemented
where single cells respond selectively to perceived characters (Tanaka 1992).
Although experimental recordings show reliable firing rates given specific
stimuli, place coding remains restrictive regarding its view of the mode of
operation of brain function. As noted by Fujii et al., averaging spike rates
over entire experiments can make it impossible to detect intricate firing pat-
terns (Fujii et al. 1996). For instance, temporal fluctuations in firing rates
are commonly observed during psychological time scales. Yet statistical
variations disappear when averages are computed over the time of an exper-
iment. Furthermore, such studies typically average over many experiments
to obtain significance and therefor can’t explain how the brain solves prob-
lems from a single presentation of the stimulus. Kruger and Becker have
provided strong evidence against the notion of the functional significance of
mean firing rates over psychological times (Kruger and Becker 1991). While
replicating the experimental findings of Hubel and Wiesel, which originally
provided support to the place coding view with orientation-selective cells in
the primary visual cortex (V1), Kruger and Becker found that spike aver-
ages over a 300ms time slot of a psychological experiment was insufficient
to predict the activation of the recorded cells given a single stimulus (Hubel
and Wiesel 1968). However, smaller time slots in the range of 20ms to 80ms
could accurately do so with a performance of up to 80%, thus reinforcing
the view that firing rate averages over long periods and many experiments
does not capture the informational principle of the brain for cognition. More
problematic to the place coding view is the assumption that grandmother
cells exist for each representation of every object and each of those object’s
features. Such a hierarchical view thus implies that dedicated cells should
be formed or tuned for each novel stimuli. According to von der Malsburg
such a mechanism would lead to a combinatorial explosion where cardinal
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cells would have to exist or be created and respond preferentially to a spe-
cific stimulus by integrating information coming from all modalities (von
der Malsburg 1981). The implausibility of such a mechanism and lack of
evidence that such spatial specificity in the brain exists is unsupportive of
the place coding view.

The second alternative to rate coding takes into account the combined
effect of a large number of cells. The original concepts surrounding the dis-
tributed coding view emerged from Donald Hebb’s cell assembly hypothesis
(Hebb 1949). According to this hypothesis the fundamental brain code is
based on the group activity of neural cells; the assembly serves to produce
a mean firing rate and is identified by it; and assemblies are formed by the
Hebbian learning rule: the simultaneous increase in firing rate of a set of
cells (von der Malsburg 1981). This view sees the group activity of an en-
semble as corresponding to a ”symbol of the mind” and has served as the
foundational principle to the connectionist approach to artificial intelligence
(Rumelhart et al. 1986; Fujii et al. 1996). In contrast to the place coding
view, distributed coding does not appeal to the single cell = single function
theory. Here a cell may play more than one role by participating in the
coding of multiple patterns. This suggests that a wide variety of inputs can
be encoded in various subsets of a single assembly thereby escaping the is-
sue of combinatorial explosion. However, cell assemblies are still understood
to code stimuli using first order firing rate statistics. Because of this, the
ability for such networks to detect variation between two inputs depends
essentially on the change of firing rate of a cell assembly. This coding mech-
anism can thus lead to a ”superposition catastrophe” and fails to account
for the problem of binding stimuli (von der Malsburg 1981). Superposition
for this view is problematic because it is impossible to distinguish two as-
semblies activated in the same area by two simultaneously presented stimuli
if only the change in average firing rate is detectable from an assembly’s
activity. In other words, it is impossible to determine which cell belongs
to which assembly if individual cells fire during the same period of time at
arbitrary rates. Although grandmother cell hierarchies have been proposed
to resolve this controversy, they do so at the cost of making stark claims
regarding the architectural nature of the brain. Indeed, selective response to
assembly activity by superordinate cells would require a hierarchical organi-
zation of knowledge within cell assemblies which goes against the Hebbian
cell assembly hypothesis and brings us back to a place coding view (Fujii et
al. 1996). Related to the superposition catastrophe, the binding problem
also introduces difficulties to distributed processing views (von der Mals-
burg 1981). The binding problem can be briefly introduced by the following
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question: How is it that the shape and colour of objects are bound in a
reliable way and not intermixed when more than one object is perceived?
The visual receptive field can selectively respond in a distributed manner
to input stimuli such that the colour green is detected and the colour red
is detected simultaneously from parallel processes. It can also be the case
that an apple is detected by a ’shape-detecting’ assembly and a pickle in
another. But distributed coding cannot account for a mechanism that can
integrate from the simultaneous presentation to the receptive field the bond
between red and apple and between green and pickle based on average firing
rates alone. Because both red and green are active in the colour area and
pickle and apple in the object area super-imposing cell assemblies are co-
active and indistinguishable given that firing rates increase simultaneously.
Finding how the brain solves this problem is important however because it
is generally accepted that the binding of parallel informational fragments
must take place to form an integrated whole for higher cognitive processing.

Underlying the problem of co-active populations lies the anatomical fact
that neural assemblies are formed within static connections between neu-
rones. However, selective binding of active patterns cannot be achieved by
fixed connections because changes in stimuli elicit variation in the neural
activity (Gerstner et al. 1997). Instead, Gerstner et al. suggest that the
physically connected population should be seen as the super-set of possible
connections that may potentially need to interact. Thus according to this
view some dynamical mechanisms of neural coordination must exist which
not only allow the formation of co-active populations within the subset of
connected parts, but also elicit selective responses of either a target pop-
ulation or change within the active population based on the current firing
pattern. Amongst the first to take note of such a requirement was von
der Marlsburg who introduced the idea that subsets of neural populations
within a connected network may contribute functionally distinct roles from
other subsets through the synchronized firing of neurones1 (von der Mals-
burg 1981). More generally, the notion that a second order statistics in
neural populations codes may reveal alternate mechanisms of signal integra-
tion and cell recruitment has been gaining ground. These supplementary
coding forms belong to the the family of spatiotemporal codes.

1This was central to von der Malsburg’s Correlation Hypothesis (von der Malsburg
1981).

5



Spatiotemporal Coding

A prima facie the nervous system is essentially constituted by a dense popu-
lation of neural cells interconnected via a sophisticated network of dendritic
and axonal fibres which transmit electrical and chemical signals to each
other. Of course these are tied to specialized sensory receptive cells, chem-
ical releasing neurones and muscle contracting cells in order to allow an
agent to perform intelligent actions. Because of this our understanding of
a neural code is generally related to the notion of transforming signals or
a state of activity into another signal or alternate state of activity within
this neural population. There are numerous dimensions of complexity that
a biological neural network can theoretically bare which have functional sig-
nificance in this transformational process. For instance, the sheer number
of cells as the sole fluctuating parameter in a network can be manipulated
in such a way that a critical population size will give rise to a sudden ”ex-
plosion” of spiking activity. Also, the complexity of the network topology
can greatly constrain potential communication channels yet favour the de-
velopment of specialized function as seen during development of the child’s
nervous system. Luciana et al. for instance observed a significant improve-
ment of prefrontal working memory in children between the ages of 5 and
7 years (Luciana and Nelson 1998). Even more complexity can be found in
the intricacy of individual cell qualities, such as synaptic facilitations, and
the sophisticated network of heterogeneous cells that are formed from them.
But fundamentally, change in network activity can arise from either change
in the activity level of each cell or change in the set of active cells. Changes
in cell activity suggests that integration via change in firing rate or signal
amplitude is at work. Changes in the set of active cells, however, suggests
that the mechanisms responsible for recruiting new cells or inhibiting active
cells should be carefully considered. These mechanisms can either take the
form of integration or coincidence detection (Abeles 1982).

Long considered the prime mechanism of neural coding, integration is
a direct outcome of cell sensitivity to incoming firing rates. The frequency
pulses that reach a neurone can either be integrated in the form of a firing
count, a firing rate derivative, or a change in conductance amplitude pro-
portional to the incoming firing rate depending on the kind of synapse being
targeted2 (Gerstner et al. 1997). Looking beyond single cell average firing
rates over psyhcological times and cell assembly average firing rates, Kruger

2Two broad classes of synapses exist: those which facilitate transmission and those
which depress it.
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and Becker suggested that spatiotemporal integration could take place via
modulation of firing rates over short time periods (Kruger and Becker 1991).
As discussed earlier, their findings from recordings in V1 suggests that av-
eraging firing rates over short term windows of about 20ms to 80ms allows
the detection of variation in rate activity during an experiment and reliably
infer stimulus type from a single set of cell activations. Change in cell ac-
tivity through temporal modulation of the firing rate would then seem to
take place as an effective means of integrating incoming signals. The lack of
further experimental evidence for this coding mechanisms makes it unclear
if rate modulation could account for the problem of superposition of stimuli
or feature binding. Furthermore it does not refute the potential existence of
complementary modes of coding.

As Fujii et al. note, when looking for the effect of stimuli on firing rates
only, an experimenter may overlook the fine temporal structures that may
arise from the correlated activity of cells (Fujii et al. 1996). The poten-
tial temporal and spatial patterns of excitation or inhibition of a neurone
through synaptic or direct somatic connections is enormous. With over 5000
synaptic connections on average per cell, cortical neurones are subjected to
a bombardment of signals often originating from more than one pre-synaptic
cell. Activity of the individual synapses are thus likely to affect the overall
response of the post-synaptic cell regardless of firing rate. The cooperative
timing and location of these incoming signals may thus have a significant
impact on the activation or inhibition of the target cell. Generally, this al-
ternate spatiotemporal form can be termed coincidence detection. Here, a
neurone’s detection of a threshold number of quasi-simultaneous incoming
signals will cause it to fire (Abeles 1982; Braitenberg 1988; Fujii et al. 1996).
Hence, the phase relation of input spike trains are encoded by the coincidence
detecting cell and determine whether an output spike will be emitted in turn.
The are a number of interesting physiological simplifications that can arise
from such a mechanism. For instance, a cell may be recruited (caused to
fire) by many weak synaptic connections. Whereas rate coding requires that
the incoming signal be transmitted through sufficiently strong synaptic con-
nections, coincidence detectors require no minimal synaptic weights but can
instead rely on the a large amount of coincident stimuli. Furthermore, the
frequency of incoming signals has no direct effect on the target cell’s fir-
ing pattern. Although it would appear that increased firing frequency may
highten the chance of coincidence to take place, it seems likely that more
finely tuned spike times can arise from appropriate circuitry. More impor-
tantly, the organization of networks of coincidence detecting cells can allow
for rich dynamics while the physiological structure remains fixed. As Fujii
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et al. illustrate, a simple network (figure ??) with two coincidence detection
neurones A and B that are both excitable via channels p and q can exhibit
varying dynamics depending on the temporal structure of the spike trains
that are emitted from p and q (Fujii et al. 1996). For instance, it is pos-
sible that the superposition of spike trains from p and q when arriving at
cell A and B are coincident and make both cells fire. However, if the phase
of the spike trains p and q that reach A is different from the phase that
reaches B it is possible to have A fire but not B or vice versa. Change in
phase would occur from varying onset of the incoming spike train from p or
q. This, for instance, can be accomplished by a difference in propagation
delay between channels and cells. Hence, depending on the pattern of the
spike trains p and q it is possible to dynamically reconfigure the state of
firing of both cells A and B. This however can be accomplished in virtue
of the spike firing patterns alone. No network reconfiguration or additional
connection is required. However, if A and B were firing rate integrating
neurones it would be impossible to have A fire but not B without adding
or removing connections. In this scenario spike rates from p and q that are
below threshold would trigger neither cell yet both would fire past a certain
excitatory threshold. Hence in contrast to firing rate neural networks, coin-
cidence detection networks allow for a dynamic recruitment or inhibition of
cells.

A B

p q

Figure 1: Simple two cell assembly

In virtue of this active recruitment it is possible to see how coincidence
detection networks may allow neural assemblies to temporarily form by the
recruitment of neurones into an active group while other connected cells
remain ’dormant’. Whereas dormant cells would exhibit sub-threshold ac-
tivity, recruited cells would play a role by emitting spikes within its assembly
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and/or to other regions. Importantly, the functional specificity of these net-
works could be transient implying that neurones may not only be recruited
by more than one assembly but also be actively engaged in multiple assem-
blies during a same time period. This suggests that activity emanating from
two distinct active assemblies may bind their informational content as long
as they belong to a connected superset of cells. Two contending theories
offer a spatiotemporal account to the superposition catastrophe and related
binding problem based on coincidence detection. As mentioned earlier the
superposition catastrophe arises from the difficulty to distinguish two or
more stimulated assemblies within the same receptive field.

The first spatiotemporal approach, and most widely accepted, suggests
that oscillatory synchronous firing of cells can help distinguish groups of
active cells within a population (Singer 1994). If cells in assembly M fire
synchronously as do cells in assembly N but with different rates from one
another, then the identification of the corresponding stimuli within the same
receptive field is possible. Indeed, synchronous activity within numerous
areas of the brain have been identified experimentally (Gray and Singer
1987; Eckhorn et al. 1988; Gray et al. 1990; Engel et al. 1991; Murthy and
Fetz 1992). Furthermore, the long lasting debates regarding the origin of
these oscillations where conciliated by realistic neural simulations. Pauluis
et al. for instance, demonstrated that synchrony could emerge from networks
of cortical cells alone (Pauluis et al. 1999). Similarly, synchronous group
activity is claimed to resolve the binding problem (Kruger 1991; Gochin et
al. 1994). Here colours and shapes are thought to be bound by inter-areal
synchrony of the assemblies in visual areas via their connected pathways.

Alternatively, a second approach maintains that large scale synchroniza-
tion is an unlikely mechanism due to the fast transient nature of recorded
synchrony (Gray et al. 1992; Kreiter and Singer 1992; Fujii et al. 1996).
Gray et al. showed that synchrony between two cortical areas 7mm apart
lasted no more than 100-200ms at a time interspersed with asynchronous
states. Instead, this view known as the Dynamical Cell Assembly Hypothesis
(Fujii et al. 1996) maintains that assemblies of coincident detecting cells can
form sufficiently complex circuits based on four propositions: (1) the net-
work structure and spatiotemporal nature of the input spikes spontaneously
and dynamically organize a cell assembly; (2) dynamic cell assemblies can
be identified by their cross-correlation; (3) dynamic cell assemblies can serve
as detectors of spatiotemporal patterns; (4) multiple cell assemblies can be
instantiated within the same neuronal pool. It is important to note that
this hypothesis accepts oscillatory synchrony as a special case of cell as-
sembly dynamics because both are founded on the principle of coincidence
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detection. However, the superposition catastrophe and binding problem are
indirectly offered a solution via proposition 3 and 4 without recall to syn-
chrony. Proposition 4 states that assemblies within the same receptive field
can be instantiated, whereas proposition 3 suggests that firing patterns from
incoming pathways can be detected as preferred patterns through a partic-
ular active configuration of an assembly within the target population. This
view thus offers an alternate perspective which states that features need not
be bound by clearly identifiable first order properties such as synchronous
firing rates, cell assembly hierarchies, or grandmother cells but instead that
binding and identification may be implicit to the fine temporal structures of
a cell assembly.

Hence a better understanding of the functional role played by these two
spatiotemporal schemes still needs to be developed. Indeed, since the discov-
ery that oscillatory activity can emerge within cortical networks indepen-
dently of subcortical structures there has been increasing agreement that
synchronous oscillatory activity must play a fundamental role in cognitive
function (Pauluis et al. 1999; Buszaki 2006). However, recent developments
tend to reaffirm the fundamental notions behind dynamic cell assembly. In
particular, Izhikevich’s notion of polychronous coding stems from a body of
experimental simulations which suggests that complex firing patterns based
on propagation delays between cells can lead to multiple temporal codes
within the same population (Izhikevich 2006). Taken together these efforts
support the prospect of developing a further understanding of the kinds of
fine temporal structures that can arise in the brain. Historically, this effort
has been motivated by experimental findings in neural cell recordings but
the improved modelling techniques and computing power in more recent
years has lead to a flourishing new research field engaged in the realistic
modelling and simulation of neural networks.

From In-Vivo to In-Silico Experimentation

Early experimental work on the neural basis of cognition has focussed mainly
on the firing rate averages of spike trains and neural assemblies. However,
new analytical techniques have emerged which provide either indirect or di-
rect evidence of the presence of a spatiotemporal code in the brain. Although
these techniques have been originally developed to study anatomical record-
ings, they are becoming increasingly applied to simulated results which are
now not only obtainable for remarkably accurate cell models but for group
dynamics as well.
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In 1968 Calvin and Stevens measured rate-normalized coefficients of lum-
bosacral motorneurons of cats. Computing the coefficient variation Cv re-
vealed low variation between 0.05 and 0.1 indicating that firing rates in
motorneurons are reliable and not random (Calvin and Stevens 1968). How-
ever, when measuring coefficients in V1 and MT of awake monkeys, Softky
and Koch recorded high Cv variations between 0.5 and 1.0 suggesting that in
these areas firing is similar to a random Poisson process (Softky and Koch
1993). According to Softky and Koch the irregularities of spike trains in
cortical regions supports the idea that firing rates are less likely to be re-
sponsible for information coding in these areas. Instead, they suggest that
there must exist a high degree of nonlinear and fast dendritic signals (the
active dendrite hypothesis) or that a strong synchronization between synap-
tic events takes place (the effective coincidence detector hypothesis) (Softky
1994; Softky 1995). Both of which suggest that a spatiotemporal component
is at play. Although alternative explanations for these irregularities based
on firing rate neurones have been proposed, Softky showed through single
cell simulation how a coincidence detection mechanism could produce such
irregularities (Shadlen and Newsome 1994; Usher et al. 1994; Softky 1995).

As discussed earlier, the presence in the brain of fine temporal struc-
tures within milliseconds of activity would provide direct evidence for the
existence of a spatiotemporal mode of information coding. Traditionally, ex-
perimenters who seek to detect average firing rates record cell activity and
compute their rates using peri-stimulus time histograms (PSTH). In 1992,
Ahissar et al. applied this technique when recording the activity of two cells
in the auditory cortex (Ahissar et al. 1992). When presented with sounds
moving from either left to right or right to left both cells began firing at high
frequencies regardless of the direction of the sound. However, after comput-
ing the cross-correlogram of the same two spike trains, they found that the
cells would fire together when the sound came from one direction, but avoid
firing together when the sound came from the other direction. This direction
selectivity is thus made evident by examining the precise temporal onsets of
spike trains which would otherwise be ignored from looking at firing rates
alone.

Furthermore, direct evidence for the special case of coherent oscillations
was made in the late 1980’s. By making local field potential (LFP) record-
ings in visual cortices a number of researchers have shown through computed
auto-correlograms that synchronization of oscillating firing neurones can oc-
cur across distant sites (Gray and Singer 1987; Eckhorn et al. 1988; Gray
et al. 1989; Engel et al. 1991). Similarly, coherent oscillations have been
attributed to sensorimotor integration in attentional tasks in awake mon-
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keys (Murthy and Fetz 1992). These findings, however, could not confirm
whether synchronous activity could emerge independently from subcortical
nuclei. In particular, a long standing debate as to whether specific thalamic
circuits could be responsible for coherent oscillations in the cortices could
not be resolved without a method that would examine cortical circuits dis-
sociated from other areas. Pauluis et al. managed to demonstrate through
simulations based on realistic properties of cortical neurones that synchro-
nized oscillations can in fact emerge from cortical circuitry alone (Pauluis et
al. 1999). In addition their work emphasized the importance of inhibition
and connection delays for these oscillations to occur.

Increasingly the role played by computer simulation in neural modelling
has offered powerful means to verify functional properties of cell and net-
works of cells based on anatomical features. In parallel, artificial neural
network paradigms have also developed over the years with the purpose of
understanding the sub-symbolic functional principles of cognition. In its
early beginnings, the connectionist approach of the 1980’s made significant
breakthroughs regarding the possibility of constructing neural models for
learning, speech perception, spatial recognition, memory, etc. (Rumelhart
et al. 1986). What I aim to motivate here though is that an adequate ap-
proach to neural modelling which can reveal the relevance of various coding
mechanisms to intelligent behaviour must be developed. Strict connection-
ism, however, favours abstract signal integrating neurone models organized
in complex network architectures that follow Hebb’s cell assembly hypoth-
esis. This aversion to alternate coding schemes and the specific model ab-
stractions made prevent this approach from accounting for the fine temporal
nature of firing patterns within a complex behavioural context.

As an alternative, a special class of recurrent neural networks named
continuous time recurrent neural networks (CTRNN) were developed so to
enable networks to exhibit a rich set of dynamics (Beer 1990). Based on
traditional connectionist integrating neurones CTRNNs possess an activa-
tion decay that requires cell activity to be integrated over time. Although,
seemingly minimal in change, recurrent connections of this sort can give rise
to highly sophisticated dynamics. Beer has in fact shown that small circuits
can exhibit stable, cyclic and even chaotic attractors (Beer 1995). The amaz-
ing richness in dynamical diversity that even simple CTRNNs can generate
has stimulated a significant enthusiasm from dynamical systems approaches
to cognition. This network paradigm has been successfully employed for the
design of motor control, agent behavioural adaptation, and dynamic mem-
ory modelling to name a few (Cliff et al. 1993; Beer 1996; di Paolo 2000).
However, despite recurrent connections and the use of an activation decay,
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it is not clear how CTRNNs could take advantage of sophisticated temporal
dynamics based on coincidence detection. First, activation decays seem to
be insufficient for the generation of sophisticated coincidence timing pat-
terns. Even if decays were set independently for each artificial neurone, this
would only alter the speed at which a cell’s signal is reduced. At most, the
timing at which a cell would start or stop emitting a passing threshold signal
could possibly be detected. Second, the activation decay affects all output
signals emitted by the neurone. This suggests that all receptive neurons will
receive simultaneous stimulation from the source neurons thereby reducing
the landscape of possible spatiotemporal patterns proportionally to the av-
erage number of connections of each neurone. Hence, although CTRNNs
offer appealing temporal properties for dynamics at the scale of an entire
network, the lack of a temporal mechanism at the level of individual connec-
tions suggests a large number of spatiotemporal patterns cannot be encoded
by such networks.

The failure of traditional artificial neural network paradigms to account
for spatiotemporal coding urges that a more careful look should be taken
to biological processes of the nervous system so to identify the fundamen-
tal criteria behind these coding forms. As suggested by Fujii et al. and
from the simulation results of Pauluis et al., signal delays between indi-
vidual cells could indeed play a central role in the tuning of fine temporal
structures (Fujii et al. 1996; Pauluis et al. 1999). By taking the neuro-
physiological properties of real networks into consideration, the conduction
delays between cells should play a fundamental role in spatiotemporal cod-
ing based on coincidence detection. Beyond connection delays, however, it
remains unclear whether further temporal components of cell may function-
ally impact their ability to encode information in sufficiently diverse ways.
As seen with CTRNNs, the activation decay of cells may potentially play
a secondary role in the temporal adjustment of firing patterns. In realistic
Hodgkin-Huxley based cell models, membrane time constants, compartment
conduction times, spike rise times, and refractory periods could all poten-
tially play an important role in this matter. However if the population of
neurons remains mostly homogeneous in terms of individual cell proper-
ties, it is fair to claim that connection delays remain the only functionally
differentiating factor that could affect fine temporal structures. Exploring
connectivity delays should thus constitute an important first step for the
experimental exploration of spatiotemporal coding for cognition.
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Spatiotemporal Codes for Intelligent Action

As presented in the earlier sections spatiotemporal neural activity appears
to play an important part in many brain areas. In parallel, the theoreti-
cal implication of this sort of activity in the solution to the superposition
catastrophe and binding problem has triggered the development of numer-
ous theories regarding its role in binding visual features, spatial orientation
of sound, sensorimotor coordination, memory, and more. Although exper-
imental work has been successful at identifying the particular cellular loci
involved in some of these cognitive phenomena, their functional specifica-
tions still remain largely unanswered. That is, even if objective experimental
observations of neural responses can detect cells and their assembly with re-
spect to a set of stimuli, it remains extremely difficult, if not impossible, to
construct a cohesive view of the subjective meaning of these localized encod-
ings as they appear to the rest of the network. In addition, the emergent and
fast transient qualities of spatiotemporal codes observed in experiments and
simulations of various neural regions responsible for divers cognitive capa-
bilities suggests that such patterns of activity elicit complex self-organizing
mechanisms. By appealing to an embodied approach for the investigation of
the informational content of networks, it should become feasible to identify
the functional and informational qualities of minimal-to-complex circuits
with respect to perception, cognition and action (Brooks 1991; Varela et al.
1991; Pfeifer and Scheier 1999). In particular, this strategy should reveal
the degree to which spatiotemporal codes play a role in sense-making for
intelligent action.

To accomplish this, a proper level of network implementation will need
to be devised. From the discussion in previous sections, it follows that an
effective coincidence detection neural network will at a minimum need to
meet the following criteria:

Cells must fire only under a certain threshold of activation. Without a
firing threshold, activation values are susceptible of recruiting target neu-
rons continuously. This would prevent the formation of any distinct cell
assembly which goes against the original hypothesis. To accomplish this,
nonlinear activation functions such as a logistic function in a connectionist
based model could be used. More biologically realistic spiking neural net-
work models that take into account cell membrane capacitance as a threshold
value would especially suit this criteria. Finally, it may even be possible to
obtain complex coding schemes with very simple binary activation artificial
neurons. Here for instance an active signal would be represented by the nu-
meric value 1 and an inactive signal by 0. But this should not suggests that
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a single input will be sufficient to activate a target cell. On the contrary, an
adequate integrative mechanism of input signals will be required regardless
of the type of activation.

Connections between cells must propagate with delays. This is arguably
the central criteria for sophisticated temporal codes to occur. Although I’ve
argued in the previous section that other physiological factors may affect the
temporality of signals, it would seem that connection delays are the most
important candidates for the coincidence of spikes to occur in temporally
interesting ways.

By starting from these minimal criteria, investigating the types of ar-
chitectures that can effectively exploit spatiotemporal patterns should help
set the stage for answering a number of pending questions, including: How
large should an assembly be to encode functional patterns? If activity of a
cell is affected by both synaptic weights and the number of incoming neu-
rones are there any organizational principles that determine their relative
importance based on function? Do ’families’ of patterns exist for particular
spatiotemporal purposes? How much information can be superimposed onto
the same population of cells? etc...

Because the approach that I propose here suggests that embodied agent
modelling should provide a means to answer these questions, it also sug-
gests that variably complex networks may need to be generated to satisfy
the embodied task. Because the total number of parameters which serve to
define the set of parameters of a simple neural network can be large, finding
a proper combination of settings can quickly become an arduous task. To
resolve this issue, evolutionary robotics suggests that encoding network pa-
rameters into an artificial genotype can facilitate the selection of fit network
configurations (Nolfi and Floreano 2000).

Evolutionary and Developmental Perspectives

Discovering network characteristics that exhibit finely tuned temporal struc-
tures in embodied tasks may be realizable from an evolutionary robotic
standpoint. This is accomplished by evolving a population of genotypes
that encode complete robot controllers through a selection process based on
phenotypic and/or behavioural criteria. Computationally, this can be real-
ized using a genetic algorithm (Holland 1975). By doing so, finding effective
connectivity patterns, delay values, synaptic weights, etc. becomes possi-
ble without the necessity of traditional learning algorithms such as back-
propagation (Rumelhart et al. 1986), reinforcement learning (Barto et al.
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1995), classifier systems (Booker et al. 1989), self-organizing maps (Kohonen
1982), etc. As Nolfi and Floreano indicate, an evolutionary approach differs
in two ways from other learning approaches. First, it demands less supervi-
sion than other algorithms by indirectly specifying adequate parametrization
via general task fitness criteria. Second, it places less constraints on the self-
organizing process because it allows the experimenter to encode any model
parameters within the genotype (Nolfi and Floreano 2000 p. 4).

Significantly, this self-organizing characteristic is particularly important
to spatiotemporal networks. If connection delays are to be encoded in the
genome this could cause the genetic search space to be much too large for
adequate solutions to be found within a reasonable amount of generations.
Worse, the lack of compactness of the genome could affect the result of the
evolutionary process (Nolfi and Floreano 2000 p. 225). Indeed, the addi-
tion of a single gene results in the exponential increase of the genetic search
space. To avoid this problem one could encode individual cell properties and
synaptic weights in the genotype while keeping delays out of the genotype.
Instead, delays could be generated via some heuristic method based on net-
work topology. Although some interesting temporal patterns may emerge
from this technique, no fine tuning of the delays with respect to behavioural
fitness can take place. Alternatively it may be of interest to explore the
potential of indirect genotype-to-phenotype transcription. Nolfi et al. for
instance, encoded within a genotype the instructions for axonal growth,
synaptic weights, and branching of artificial neurons for robot control (Nolfi
et al. 1994). By employing similar kinds of developmental processes it be-
comes possible to maintain genotype compactness, promote the expressive
power of the genome, and improve evolvability (Nolfi and Floreano 2000 p.
225-226). Hence, by encoding growth rules such as reaction diffusion proper-
ties of chemical axons or more simple topological distributions the tuning of
connection delays becomes possible while evolutionary efficient. This could
result in precisely tuned and effective circuits for spatiotemporal coding in
cognitive and behavioural tasks. Furthermore, this may open a new field
of exploration concerned with the evolutionary and developmental traits of
biological nervous systems from an embodied cognition standpoint.

Now that an overall methodology has been outlined, a central challenge
still remains to be addressed. What are the potential behavioural or cogni-
tive tasks that could elicit neural coding that is spatiotemporal in nature?
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Finding Spatiotemporal Tasks

An evolutionary robotics approach to neural controller design requires min-
imal supervision, yet a selection criteria that can distinguish fit individuals
from unfit ones must be still defined. But because the project here re-
quires the identification of behaviours that are both efficient and prompt
spatiotemporal coding, the constraints on task selection are twofolds. The
evolved agent’s neural controller must not only be capable of finding solu-
tions to a task but do so while exhibiting fine temporal patterns of neural
activity. Three different sources of theoretical and empirical work can be
drawn upon for the identification of suitable tasks.

Neuroscientific recordings of neural response to stimuli have a traditional
appeal. Empirical results on behavioural tasks that exhibit fine temporal
patterns and synchronized oscillatory activity can indicate a general prob-
lem domain. Murthy and Fetz for instance, demonstrated how coherent
gamma oscillations appeared in the somatosensory and somatomotor areas
during a sensorimotor task where monkeys would have to search through
tactile exploration for raisins placed in a container outside their visual field
(Murthy and Fetz 1992). But when raisins where present in the visual field
no oscillations where recorded. This suggests that this complex search pro-
cedure placed particular demand on the brain in which temporal codes were
elicited. Although the complex cognitive apparatus of the ape which allows
it to search and grasp hidden grapes is certainly not directly approachable
from an embodied modelling standpoint, it may be possible to devise a func-
tionally equivalent but simplified task for which neural controllers could be
evolved.

The extensive body of work achieved by evolutionary robotics itself is
an obvious source of embodied cognitive tasks. Indeed, reactive behaviours
such as obstacle avoidance, foraging, etc. to more complex problem solv-
ing such as perceptual aliasing, sensory ambiguity, sequential organization
of sub-behaviours, etc. can constitute a wealth of tasks that are directly
amenable to embodied investigation. These tasks, however, have already
proven themselves as solvable by non spatiotemporal coding means of the
sort I wish to investigate. It may be possible though that by evolving net-
works in which coincidence detection is permitted to occur more efficient so-
lutions to some of these problems will be found. In particular, it may be the
case that spatiotemporal codes could significantly contribute to problems re-
quiring complex internal dynamics and modular architectures. Fortunately,
sample work in this area using traditional coding schemes has already been
completed which could inspire novel tasks (Nolfi 1997).
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Finally, work in cognitive neuroscience may not only help identify suit-
able embodied tasks but it also addresses those kinds of tasks that may pro-
vide a more integrative view of the role of spatiotemporal coding in complex
embodied cognition. For instance, the proposal by LeDoux of the existence
of a dual-pathway in the mammalian nervous system for rapid behavioural
switching has stimulated work in agent simulations to demonstrate the func-
tional plausibility of such networks for fast switching between predator eva-
sion and food foraging (LeDoux 1986; den Dulk et al. 2003; Heerebout
and Phaf 2009). In fact, by altering the orginal architecture proposed by
den Dulk et al., Heerbout and Phaf obtained individuals that exploited os-
cillatory activation resulting in increased fitness. Originally, they intended
to implement a memory component via recurrent connections to the hid-
den layer of a simple feedforward network. However, by enforcing recurrent
signals to propagate with single step time delays they obtained robust stim-
uli induced oscillations within the network. This activity allowed agents
to significantly increase the speed of their response to predator or food to
the point of nearly doubling their fitness score (Heerebout and Phaf 2009).
This work emphasizes the potential significance of delayed recurrent con-
nections that are both excitatory and inhibitory for oscillatory activity in
simple neural networks. Expanding on work of this nature by introducing
new architectural or environmental complexities could reveal the limitations
and requirements of complex spatiotemporal activity.

Overall, existing empirical work supports the notion that spatiotempo-
ral codes are located in diverse areas of the nervous system. In addition
theoretical work suggests that this coding form should apply to a number
of tasks. Hence, categories of cognitive and behavioural processes should be
identifiable given an appropriate experimental approach.

Conclusion

The prospect of discovering the cognitive implications of spatiotemporal
codes in embodied tasks should help reveal the nature of their informational
value and the degree to which they can participate in complex cognitive pro-
cesses for intelligent action. This paper aimed to address the empirical and
theoretical context in which this coding scheme can be vindicated. By first
introducing the role of rate coding paradigms a better understanding of their
limitations and scope was brought forth. This established an appropriate
context for the introduction of spatiotemporal coding as a complementary
form of neural processing. In particular, their theoretical plausibility was
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defended, their manifestation in both dynamical cell assembly and synchro-
nized versions was introduced, and their potential ability to address the
superposition catastrophe and binding problem was developed. Important
examples of their empirical validity was subsequently given. Increasingly,
however, it was shown that simulations of both accurate biological and ar-
tificial network models can provide important insights regarding the para-
metric conditions that favour this coding scheme. An argument in favour
of gaining a better understanding of their informational content via embod-
ied modelling was supplemented. In particular an evolutionary approach is
favoured whereby the self-organization of spatiotemporal networks via natu-
ral selection could not only give rise to yet unforeseen applications of coinci-
dence detection temporal codes, but also validate their use within complex
environmental tasks. Finally, the issue of identifying adequate tasks was
brought forth. This difficulty, however, is offset by the existence of a large
body of empirical work exploring spatiotemporal codes on the one side, and
embodied cognitive tasks on the other. By building upon these efforts I
hope that insights will be made regarding the role that self-organizing neu-
ral mechanisms bare on the cognitive processes of intelligent behaviour.
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