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Abstract

The present paper investigates alternative forms of neural mod-
eling for adaptive behaviour in order to determine the potential of
minimal cognitive models of adaptive behaviour . Three alternatives
are inspected: the CTRNN model proposed by DiPaolo (2000), a mass
action model inspired by the experimental selection approach with a
simplified form of signal selection (Edelman 1993), and primitive reac-
tive model used for argumentative reference.

Introduction

The complex and divers behaviours of embodied and situated agents
are largely underdetermined. Typically more than a single control
mechanism will result in equivalent behaviour. This is known as the
Bernstein problem (Bernstein 1967). Yet most animals as we do our-
selves are able to handle these difficult tasks not only with ease, but
with great tolerance to external disturbance. From this, It follows that
this ability for behavioural adaptation must also be largely underde-
termined. The relevance of adaptive behaviour for an system facing
changes in its environment is fundamental for the development of a the-
ory of intelligent behaviour. Early work from cybernetics in the 1950’s
originally introduced detailed and formal accounts for how systems
may accomplish such adaptation (Wiener 1948, Ashby 1957). In the
early 90’s the regaining popularity of cybernetic ideals via behaviour
based robotics, reintroduced the problem of behavioural adaptation
(Brooks 1991, Beer 1990, Maes 1994). Contemporary advancements in
the area of adaptive behaviour have generally favoured sophisticated
neural mechanism based on individually complex functional units (Di-
Paolo 2000). Although largely successful at exhibiting agent adapta-
tion to a multitude of disruptions, such modeling may in some respect
’over shoot’ the Bernstein problem of adaptation by ignoring simpler
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forms of adaptative mechanisms. In consequence this may result in a
biased appreciation of the underlying complexity required to achieve
certain tasks by embodied agents. The aim of the current paper is to
expose alternate forms of modeling for agent adaptation in the same
context as that proposed by DiPaolo, where the agent must perform
phototaxis and adapt to disruptions. The first experiment shows that
a small number of funcitonal units are still effective for adaptation in a
continuous time recurrent neural network (CTRNN) model. The sec-
ond approach examines the performance of a neural mass model alike
Edelman’s experimental selection approach with a stabilizing mecha-
nism inspired by stochastic signal selection (Edelman 1993), and the
final experiment exposes that non internal stability can result in en-
vironment adaptation even in the face of sensory inversion, I call this
the minimal reactive approach.

Adaptation, Stability, and Plasticity

In his seminal work which developed a system theoretic approach to
describe and understand the essentials of complex agent control, Ross
Ashby introduced a number of key concepts still relevant today for
the explanation and design of intelligent agents (Ashby 1957, Ashby
1960). One of the principle underlying motivations for this work came
from the idea that adaptation may be regarded as a prototypical char-
acteristic of all intelligent creatures. Three core ideas stem from this
development: stability, variety and regulation. The notion of stability
simply states that given the current configuration of a system, it is
stable under transformation T if its variables always return to their
original values. We can think for example of the amount of water ab-
sorbed , or the body temperature in animals. Stability happens to
be a fundamental element in natural organisms (although not exclu-
sive to these), and conforms with the most contemporary definitions
of life developed by the autopoietic framework (Maturana and Valera
1980). An agent in the environment must then maintain its system
within stable bounds in order to remain the system that it is as a
whole, and continue to operate as it can. In order to maintain stabil-
ity Ashby introduced the notion of variety of a system’s configuration.
To counteract potential turbulence imposed by the environment, an
agent should change its own configuration so as to maintain internal
stability. Said differently, the variety of the environment that impacts
the agent may be cancelled by it if adequate variety is generated by
the agent in return; as Ashby says himself: ”variety can destroy vari-
ety” which he calls the law of Requisite Variety (1957 p. 207). To do
so the third notion of regulation is key. A system must implement a
means to apply transformations on its variables so that the adequate
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counter variety is produced. For instance, the action of grasping a
cup of water and drinking so to maintain a good level of water intake
constitutes a form of external (or motor) regulation. Yet recourse to
bodily extension to keep stability may require the activation of much
more complicated processes. Often external regulation will only be
employed if internal regulation is insuficient. We can think of the liver
as an internal regulator for sugar concentration in the blood. An im-
portant element to the Ashbyan contribution is the notion of ultra
stability. Traditionally the dynamics in cognitive models of behaviour
borrow a pre-designed and limited path intended by the experimenter.
The connectionist modeler ’trains’ his/her network to learn particu-
lar features from a constrained and fixed domain. The evolutionary
robotics researcher enforces behaviourally selective criteria on equally
limited domains. In fact prescribed dynamics is inherent in the vast
majority of cognitive models based on sensory-motor coupling (Brain-
tenberg 1984, Brooks 1991, Scheier and Pfeifer 1995). While these
models can contribute significantly to our understanding of diverse
and complex behavioural patterns or even higher order cognitive feats
such as reasoning and problem solving, some limitations are inevitably
imposed by rigid models. Although delimiting the variability of a sys-
tems parameters from stringent design criteria may exhibit non linear
behaviour, the approach will ultimately lead to rigid dynamics. Hence
as it is underpinned in Ashby’s framework, there is a strong sense in
which simple sensory-motor coupling between an agent and the envi-
ronment cannot lead to generative adaptive behaviour. When stimu-
lated such an agent can only reflexively produce behaviours from an
existing repertoire, i.e. those behaviours that are within bounds of
the parameters which qualify their dynamics. The motivation behind
ultra stability is then to endow a system with a ’meta-regulatory’ sys-
tem that acts on the parameters of the first. This way an agent can
not only react to the effects of the environment via a general regula-
tory system, but it may also generate new behaviours if it encounters
disruptions that would otherwise ’max-out’ the initial configuration of
the system or violate those variables that are essential to the agent’s
well being.1 The degree to which a system has mechanisms apt of af-
fecting its own parameters defines the plasticity of the system. Hence
plasticity at the parametric level allows an agent to cope with events
that would otherwise be impossible using reflexive response. To do so
it must generate novel internal and/or external variety. Because of this
however, it is possible that some stability may be lost. It is therefor
crucial that the agent implements a plastic mechanism that effectively
rectifies the stability of the systems variables while ultimately gener-

1The notion of essential variables is proper to Ashby’s framework and deserves consid-
erable attention. This however, goes beyond the aim of the present paper.
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ating new variety. This may de understood as the plasticity/stability
dilemma in the context of adaptability.

Modeling Adaptive Behaviour

Since Ashby’s foundational framework there have been a number of
theoretical contenders advocating effective means to account for plas-
tic change. In the following I introduce some of the main contrasted
approaches which should suffice for the sake of argument.

Donald Hebb’s seminal work on functional characteristics of the
nervous system and individual neurons in particular, constitutes the
foundation of modern neural modeling (Hebb 1949). Hebb’s rule which
dictates the manner in which synaptic potentiation is reinforced or di-
minished may be held as the archetypical model of functional plasticity.
This rule quite simply states that a synaptic connection between two
neurons is reinforced if it is repeatedly or consistently active. This
simple condition and some variations of it led to the development of a
number of neural models geared towards the explanation the nervous
system’s general functioning. In the realm of neural modeling for be-
havioural adaptation, two significant approaches have been put forth
and are still prevalent today.

In the late 70’s Gerald Edelman was motivated by the idea of
coming to grips with a framework that would connect psychological
phenomena to biological understandings of evolution and development
(Edelman 1993). In his work Edelman challenges the information the-
oretic approach to cognition which makes the problematic assumption
that information in the world is unambiguous and predefined. Instead
his perspective on the appropriate level of neural modeling consists
of admitting the high degree of variability present in the environment
and the necessity for an agent to successfully categorize perceptually
and conceptually. To do so he proposes the theory of Neural Group
Selection. In his view, the nervous system implements a process of
selection upon variation. Two fundamental principles guide this pro-
cess: strongly interconnected and diverse neuronal groups must take
place during ontogenetic development, and high variability of synaptic
strength which serves to select the most effective neuronal groups to
achieve a suitably adaptive behaviour. Although Edelman never makes
it explicit, it is clear that his concerns regarding the criteria for ade-
quate cognitive modeling agree quite well with Ashby’s developments.
In particular the neural group selection approach constitutes a form of
plasticity and variety that conforms to Ashby’s law of Requisite Vari-
ety. The neuronal group theory is particularly appealing in that it not
only provides a general guideline for the design of experimental models,
but models that follow from it may not only make predictions about
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adaptive behaviour but also about mechanisms involved in a systems
development and how that development may further affect behaviour.
Three distinct stages of development in neural group formation are
identified by Edelman. The first consists of neural migration and ad-
hesion which under the guidance of morphoregulatory molecules will
lead to the formation of a wide variety of neuronal cell groups. Thus
constituting what he calls the primary repertoire. The following stage
involves the process of what he calls ’experimental selection’, whereby
synaptic changes amongst neurons take place under the influence of
the agent’s experience and action in the environment, thereby form-
ing what he calls the second repertoire. At this stage little anatomical
alterations occur. The properties of synaptic reconnection may be
best described by statistical signal correlations on a wide number of
connections rather than single neuron to neuron activation as usually
favoured in more strict Hebbian-exclusive type models. The value of
the plastic change is placed less on individual neurons but favours the
action en mass of the group instead. Interestingly, the statistical qual-
ity of the neural activation patterns in experimental selective models
should permit high inner group variety as long as the group coheres
to form the adequate signaling. Because of this, complexity of activa-
tion at the individual neuron may not be selected for as much as the
complexity of activation provided by the whole. The third stage does
not follow from the previous chronologically, but is complementary. It
involves the coordination of neuronal groups between them and the
way they form. Because intelligent agents typically dispose of multiple
means of sensing, motor action, and mental activity, complex chore-
ographies between neuronal groups must develop. To account for the
way in which neuronal groups form coordinated activation patterns,
Edelman introduces the process of signal reentry. This mechanism
involves strengthening or weakening of inter-group connections when
both groups are simultaneously activated by a particular sensation,
thus leading to temporally coordinated activation. Because in this
process, no particular direction of the signaling is predefined or dic-
tated in a supervised way, Edelman claims it does not constitute a
feedback mechanism. This notion of reentry is crucial for the potential
explanation of extended and complex cognitive phenomena. Impor-
tantly along with signal selection, it introduces a alternate mechanism
of plasticity to Hebb’s traditional model. Because processes such as
reentry and experimental selection abide by self-organizing principles
of plastic change, exploring simple forms of these mechanisms should
provide new insights on minimal cognitive approaches to adaptation.

The second important approach to neural modeling for adaptive
behaviour consists of dynamical neural networks with hebbian type
plasticity (Beer 1990, DiPaolo 2000). This approach takes largely from
the minimal neural models inspired by connectionism and sensory mo-
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tor coupling as shown by Braitenberg (1984), and has been favoured
by a large majority of the new ai community. By embodied sensory-
motor coupling, Braitenberg showed that a diverse set of sophisticated
behaviours can be achieved even with the most basic form of ’wiring’.
With additional time dependent non-linear dynamics, as Beer’s contin-
uous time recurrent neural networks (CTRNN) exhibit, a much larger
variety of sensing and action can be achieved. Scheier and Pfeifer for
instance made important findings regarding the ability for highly lim-
ited robotic agents2 to reduce the dimensionality of the input space
via active perception using a dozen time recurrent neurons (Scheier
and Pfeifer 1995). More recently DiPaolo has shown that sophisti-
cated adaptive behaviour in a simple phototaxis task using minimal
robots, is possible in virtue of the integration of Hebbian type plastic-
ity within a time recurrent architecture (DiPaolo 2000). Psychological
work on visual inversion in humans has shown that the completion of
difficult tasks such as bicycling, skying and others, is possible after a
period of adaptation (Kohler 1964). Inspired by this work, DiPaolo
designed a neural model implemented in a simulated robot which is
evolved via genetic selection to perform reliable phototaxis using only
two symmetrically opposed light sensors, and two motors. After the
robot successfully approaches a light source a disruption is introduced
by inverting the light sensors on the body while maintaining the same
internal connectivity. In a standard Braitenberg vehicle this would
cause light aversion. DiPaolo illustrates however, that given sufficient
plasticity on the synaptic weights, the robot can readjust and perform
phototaxis after a period of adaptation.

In the following experiments I intend to illustrate that a simplified
form of DiPaolo’s implementation can also achieve adaptation to dis-
ruption in the phototaxis task. However I also present an alternative
approach which takes inspiration from the neural mass action using a
form of experimental selection as proposed by neural group selection
theory.

Experiment 1

For the first experiment I replicated, with some alterations the model
and method described by DiPaolo in his work on homeostatic adap-
tation (DiPaolo 2000). For his experiments DiPaolo made use of a
time recurrent neural network model consisting of 8 neurons with four
plastic rules for which effective parameters where set using genetic
evolution. His results showed that a simulated Khepera robot with
two motors for drive and two light sensors symmetrically opposed by

2Scheier and Pfeifer used 1st generation Khepera robots that posses only two wheels
for action and 8 active infrared sensors for perception.
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about 120o can perform phototaxis even after inversinon of the light
sensors is applied. Because the aim of the present paper is to illustrate
the potential of minimally cognitive models of adaptation, I decided
to replicate the model on most details while reducing the number of
neurons to 4 and to 2.

Method

The implemented continuous time recurrent neural network was first
tested with 4 neurons and later with 2, where each neuron’s activation
was dictated by:

τiẏi = −yi +
∑

j

wjizj + Ii

where τi is the rate of activation decay with a range between [0.4, 4], yi

the activation level of the node, wji the synaptic weight between node
j and node i with range [-8, 8], Ii the sensory perturbation on node i,
and zj the the firing rate of the node defined as:

zj =
1

1 + e−(yj+bj)

where bj is the activation bias ranging between [-3, 3]. Two sensory
neurons are perturbed by individual light sensors, and two separate
effector neurons are individually used to drive each motor (The same
two neurons are used for both sensing and motor control in the 2 neuron
case). Input signals from the light sensors are mapped to the real
valued range [0, 1] where 0 is darkness and 1 is maximal light. A gain
between [0.01, 10] that is exponentially raised is then applied to this
transduced signal. Firing rates from two effector neurons are mapped
to the range [-1, 1] and a gain between [0.01, 10] also exponentially
raised, is used to drive the motors. Each parameter is genetically
encoded in ranges from [0, 1] and mapped to the correct range during
transcription. Additionally 4 plastic weight update rules are applied
to each connection. Two supplementary parameters are genetically
encoded for this. The first parameter is an integer in the range [0, 3]
indexing the rule of plastic change for that connection, the second is a
rate of change ηji in the range [-0.9, 0.9]. The four rules are:

Rule0 : ∆wji = ηjipizjzi,

Rule1 : ∆wji = ηjipizi(zj − zo
ji),

Rule2 : ∆wji = ηjipizj(zi − zo
ji),

Rule3 : ∆wji = 0

where pi is the degree of local plastic facilitation, and zo
ji is a threshold

value corresponding to a projection of the weight wji in the range [0,
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1]. To limit the update of the weights within bounds, their values are
imposed a hard limit. Here, pi is computed as a step function with
respect to the sum yi + bi where:

pi = −1 for yi + bi < −4,

pi =
1
2
yi + bi + 1 for − 4 ≤ yi + bi < −2,

pi = 0 for − 2 ≤ yi + bi < 2,

pi =
1
2
yi + bi − 1 for 2 ≤ yi + bi < 4,

pi = 1 for yi + bi ≥ 4,

As described by DiPaolo, Rule 0 implements Hebbian/anti-Hebbian
change. Rule 1 and Rule 2 strengthen or weaken the weight depending
on the activity of the presynaptic (Rule 1) or postsynaptic (Rule 2)
activity. Rule 3 simply dictates the weight as being non-plastic. The
activation of the each neuron is computed using Euleur integration
with a time step TS = 0.1.

A genetic algorithm is used to evolve a population of 60 individ-
uals using steady state elite selection. Two individuals are selected
randomly amongst the twelve best, an offspring is created by random
crossover at each loci with probability 1/2. Mutation as each loci is
applied with probability 1/2 using a small gaussian value in the range
[-0.01, 0.01]. This individual is then placed in the population by re-
placing a non-elite individual. Individuals are assigned a fitness score
corresponding to the average euclidian distance from the light source
over three separate runs. Each run lasting 3000 time steps. Hence no
preferential bias is present in the selection process. At the beginning of
each of the three runs, the individual is placed randomly in the 800 x
800 space, in which the light source is placed in the center. The space
is infinite with wrap around. I used Olivier Michel’s Khepera simula-
tor, to handle real robot and world dynamics (5% noise is applied to
the light sensors, and noise in the range [0.01%, 0.1%] is applied to
the position of the robot) (Michel 1995). No light sensor inversion is
performed during evolution.

Results in a 4 Neuron CTRNN

After 500 generations each 60 robot was tested a number of times for
an extensive number of time steps (> 10000). More than 80% of the
robots performed phototaxis successfully. Individual robots were then
tested on light sensor inversion and monitored for performance. After
conducting the experiment a number of times, a particular phototaxis
strategy tended to dominate. This strategy consisted of rapid ’on-the-
spot’ spinning in the same direction (although direction could change
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Figure 1: To the left, a 4 neuron robot behaviour before disruption. To the
right the same robot after light sensor inversion.

amongst robots), followed by intermittent but rapid straight jerks of
varying distance. As soon as a robot would be within near distance to
the light source it would stop its jerks but continue spinning. although
spinning is not visible, straight jerks can be seen in figure 1. After light
sensor inversion, the robot is repositioned randomly in the space (simi-
lar to DiPaolo). Figure 1 also illustrates a jerky behaviour of the robot,
however robots would not typically approach the light source imme-
diately. Hence a period of adaptation as found in DiPaolo’s 8 neuron
model would seem to have taken place. Here this adaptation required
roughly 3000 time steps. Figure 2, shows the distance of the robot
to the source before and after sensor inversion. Although the robot
never gets as close to the source of light after inversion, is does cease
to change position. This suggests that internal stability is regained
once the robot reaches the source of light within adequate distance.
Arguably it is possible that a confound is present in these results in
that the robots where ’pre-adapted’ to visual inversion. This is pos-
sible if both light sensors are integrated within the network without
distinction. I later demonstrate the possibility for this in experiment
3. If adaptation is indeed occurring by exploiting the plastic rules
for weight potentiation adjustment, these results show that a simpler
CTRNN than that used by DiPaolo can be employed to exhibit adap-
tive behaviour.

To further explore the possibility of minimal modeling using CTRNN
for adaptation, a set of experiments were conducted on 2 neuron net-
works.
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Figure 2: The distance of the 4 neuron robot from figure 1 to the light source
with respect to time.The black vertical line indicates the point of inversion
and random repositioning.

Results in a 2 Neuron CTRNN

Following the exact same procedure as in the 4 neuron case, the va-
riety of behaviours obtained where much more diverse with robots
control by 2 neuron CTRNNs. However, most robots evolved after 500
generations would perform phototaxis successfully. Most behaviours
consisted of rapid straight movements in random direction until light
was perceived. At this stage robots would alter the angular velocity
of their wheels generating circling movements enabling it to maintain
close distance to the light source (< 200 distance units). Typical be-
haviour once near the light source would consists of circling the light
continuously as can be seen in figure 3. After light sensor inversion
and repositioning, robots would quickly reach the source and recom-
mence circling although not always as close as prior to inversion; this
is visible in figure 3. Figure 4. shows that the distance of the robot to
the light source after inversion diminishes quickly (< 800 time steps).
At first this may indicate that a much shorter period of adaptation
seems possible using this behaviour with 2 neurons than in the 4 neu-
ron case seen above. However the required number of time steps for
plastic change to take effect should be considerably longer, as shown
by DiPaolo. Along with the possibility of pre-adaptation to visual in-
version, this may impose further doubt as to the genuine occurrence of
adaptive change in the neural controller.
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Figure 3: To the left, a 2 neuron robot behaviour before disruption. To the
right the same robot after light sensor inversion.

Figure 4: The distance of the 2 neuron robot from figure 3 to the light source
with respect to time.The black vertical line indicates the point of inversion
and random repositioning.

11



Experiment 2

As introduced above, an interesting alternative to neural modeling for
adaptive behaviour stems from Edelman’s neural group theory. Activ-
ity in the nervous system is typically the result of massively parallel
and temporally orchestrated groups of neurons. Edelman is not alone
in this arena. Freeman inspired by work from Katchalsky, has formal-
ized possible mechanism for neuronal mass action based on principles
of reaction/diffusion (Freeman 1975, Katchalsky 1971, Turing 1952).
The appeal of modeling neural masses is not simply motivated by their
biological reality, but also by the degree of simplicity each individual
neurons may behave. Complexity using this kind of modeling does not
necessarily arise from complex constitutive units, but from the emer-
gence of complex activity via the dynamics of simple interacting parts.
This view fits quite nicely with the increasing evidence that synergistic
phenomena, such as the individual activity of ants in a colony, may give
rise to complex phenomena which in their own contribute effectively
to their environment (Forest 1990, Beckers et al. 1994) . Inspired by
this I designed a rudimentary model for neural mass action that should
allow a robot to perform the same phototaxis task as in the previous
experiments while successfully adapting to light sensor inversion.

Method

A network of 80 potentially active neurons is split into 4 neural groups
of 20 neurons. One group is assigned to each input light sensor, and
one group is assigned to each effector. Sensory groups can potentially
connect with either motor group via 400 connections. No inter-sensory
or inter-motor group activation is possible. Synaptic activity is either
off or on (0 or 1). Similar to a basic Braitenberg vehicle the signal is
directly propagated from sensors to motors via this connection scheme.
At a single time step the velocity of a motor is integrated using the
following equation:

Em = γ

∑
csimjLs

N

where Em is the velocity applied to motor m, γ an input gain in the
range [0.01, 10] exponential raised, csm the connectivity state between
neuron i from sensory group s and motor neuron j from effector group
m (either 0 or 1), Ls the input value of light sensor for group s pro-
jected in the range [0, 1] where 0 is darkness and 1 full brightness,
and N the total number of neurons in the network (i.e. 80). Here
only γ is genetically encoded. To encourage stability by mimicking
neural shedding (cell death) so as to form a primary repertoire the
way Edelman describes developmental variation and selection, a decay
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status value dsm is applied to each connection csm. This decay doesn’t
directly affect the potentiation of the connection, but instead dictates
the probability that this connection will cease. To restrict and include
noise to the chance of shedding a connection, the decay status dsm is
scaled to the range [0, 1000] and shed with increasing uniform prob-
ability when it is below 100. This ensures a minimal life duration. If
shedding occurs reconnection from a random node of the same sensory
group to a random node of either motor group is possible if the previ-
ous scaled decay value is below an increasing uniform probability below
10. Note that reconnections done this way, may overtake previously
existing connections. This decay state of each cell only indicates the
’health status’ of a connection between two neurons. The factor that
reduces this status is a group-to-group specific decay rate τg in the
range [0, 1], where g indicates one of the four possible group-to-group
mappings: s1 → m1, s2 → m1, s1 → m2, s2 → m2. At every time step
every connection decay state is reduced by:

dsm = dsm − (TS ∗ τg)

where TS is a time step factor of 0.1.
This mechanism of statistical reconnection based on neural cell de-

cay accounts for the criteria of plasticity required in a model of adap-
tation, and complies to Ashby’s law of Requisite Variety. However
stability in such a mechanism cannot be attained following this pro-
cess alone. The preservation of essential variables is necessary so that
the agent seeks to alter its behaviour to maintain this essential stabil-
ity. The phototaxis experiment instantiates these conditions by having
a robot strive to maintain a certain level of luminescent input. To im-
plement this stability, a decay damping factor σ is used to compensate
the connection decay (range [0, 1]). This damping however, is only ap-
plied to a particular connection if that connection contributed in the
immediately preceding time step to a higher activation of the neuron
in the motor group. In this context because activation increases only
when light input increases, this mechanism prevents the shedding of
neurons contributing to stability.

The same damping factor is used for all neural groups. It affects
the decay state dsm the following way:

dsm = dsm + (TS ∗ σ ∗ Esimjt+1
− Esimjt

) ifEsimjt+1
− Esimjt

> 0

where Esimjt
is the incremental fraction of activity from sensory neuron

i to motor neuron j at time t.
To find a suitable set of parameter values for γ, each of the four

τg, and σ, they were encoded as real values in the range [0, 1] and
scaled appropriately during transcription form genotype to phenotype.
All connections where initialized to the active state (value 1) during
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transcription. All decay status values where initialized in the range
[0.5, 1] also during transcription. The genetic algorithm employed
steady state updating with elitism, recombination and mutation in the
same manner as in experiment 1.

Results

In the same fashion as for experiment 1, during evolution each run
consists of evaluating the distance of the robot over three separate
trials and taking the average for fitness estimation. A population of
60 individuals is evolved over 300 epochs. Less epochs were necessary
to obtain individuals that performed phototaxis than in the previous
experimental case due to the small number of parameters that need
adjustment.

After 300 epochs 95% of the robots performed phototaxis. Most
adopted rapid forward motion without spin when the light source did
not reach the light sensors, or was not directly incident on them. In-
creased light exposure would typically induce large circling on the out-
set and smaller circling as it got closer to the light source or after a
period of sustained exposure. Although most robots never tended to
approach the light source too closely, their behaviours clearly demon-
strated a progressive approach through various circling motions to-
wards the light, as can be seen in figure 5. This implies that the
statistical selection model does favour stability via the decay damp-
ing factor. Careful inspection of the connectivity rates indicated that
persistent connectivity was maintained when the robot what near the
light source. Disruption of phototaxis was applied after this stability
had been reached. The robot was repositioned, and the light sensors
inverted. A clear period of accommodation occurred for the tested
robots. The right image in figure 5 shows the extent of exploratory
behaviour after inversion for a robot. Figure 6 shows the duration
required for adaptation of the same robot. Interestingly a consider-
able amount of time steps was required for this adaptation to occur
(> 25000), much like the results obtained by DiPaolo in his 8 neu-
ron CTRNN model. Also, figure 6 shows how the robot’s behaviour
is not altered immediately after inversion in the time interval [7450,
8200]. Although repositioned, the robot sustains the same tight cir-
cling behaviour as prior to inversion during that interval. This further
indicates the role played by the decay damping factor σ which dimin-
ishes in effect due to sensory inversion, thus allowing the decay state
to decrease which leads to neural death and reconnection. Hence it
appears that the connection decay process does confer sufficient neural
plasticity for the robot to reconfigure its internal dynamics and gain
the ability to perform phototaxis.

Some criticism may question the degree of adaptation that this
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Figure 5: To the left, a statistical selection model robot behaviour before
disruption. To the right the same robot after light sensor inversion and
random repositioning.

Figure 6: The distance to the light source with respect to time for the
same statistical selection model robot as in figure 5. The black vertical line
indicates the point of inversion and random repositioning.
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model offers. Because the light source is not reached promptly during
the normal period of phototaxis, it is difficult to assess the extent to
which the period of adaptation is after disruption if not in fact the
same process involved in phototaxis prior to disruption. Indeed the
present model encourages massive reconnection even when the robot is
close to the light after a prolonged period of time. This is because the
damping factor is only applied to a synaptic decay state if the connec-
tion was more efficacious for phototaxis than it was at the immediate
preceding time step. Hence in its current form the model encourage
high plasticity continuously, and stability only when the source of light
gets closer. Another criticism may stem from the fact that the decay
damping factor favours phototaxis in a task specific way, thus invali-
dating this model as general purpose. This is not true however, since
this damping is not suited to this task only, but generally discourages
the death of active cells and the creation of new connections. Over-
all, it is important to realize that without further investigation into
the dynamics of such models for adaptation as the one proposed by
DiPaolo, and the statistical selection model I propose here, it is possi-
ble to mislead the research on dynamics of adaptive behaviour. This
is why exploring minimal models can be important to form a solid
grounding so as to extend experimentation with more complex mod-
els. The following experiment shows how a simple Braintenberg vehicle
can give the impression of internal adaptation when facing apparent
sensory disruption.

Experiment 3

Method

In order to illustrate how internal adaptation (plastic change) is not
always necessary for an adapted behaviour, a simple robot that per-
forms Braitenberg like phototaxis is implemented. In this simulation,
each motor is assigned a bias factor bL for the left motor and bR for the
right motor, both in ranges [-10, 10]. Both motor biases are applied to
the same light sensing input I which simply constitutes the sum of both
light inputs (each input projected in the range [0, 1] as in experiments
above). A gain γ in range [0, 10] and exponentially raised, is finally
applied to the sum: I + bR and I + bL before effecting the motors,
giving:

LeftMotor = γ(I + bL)
RightMotor = γ(I + bR)
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Figure 7: To the left, a simple Braitenberg robot using the same sensory
input to drive both motors. To the right, the distance to the light source
with respect to time for the same robot. No sensory inversion is necessary
since the inputs are combined.

A random set of of parameters for γ, bL and bR are generated for
60 individuals in order to find interesting configurations.

Results

Although a wide range of behaviours were generated, we notice from
figure 8, that phototaxis is achievable with this sort of control mecha-
nism. Although this particular agent does not get very close to the light
source (others got closer), its behaviour showed smooth curved motion
while it was distant from the light source. Getting closer however it
rapidly changed its behaviour by circling the light continuously. By
manually displacing the agent in other positions of the space, the same
type of behaviour would appear where eventually it would reach this
revolution about the light source. Although sensors in this simulator
are subject to noisy input these robots are able to perform adequate
phototaxis, under many configurations. Because the sensory inputs are
combined and this combination applied to both motors, sensory inver-
sion would not have an impact on behaviour. These simple reactive
robots seem then to be pre-adaptive to the experimental conditions.
Hence, this suggests that any model which evolves its inner configura-
tion in way that is pre-adaptive to the experimental task may cause
misattributions to the performance of an agent. As Bernstein noticed,
behaviour is largely underdetermined. It is perhaps of interest to see
that this pre-adaptive quality may explain resistance to environmental
change that some animals or insects may display.
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Conclusion

The importance of exploring potential models for adaptive behaviour is
still in its infancy. I believe theoretical development from the cybernet-
ics era has made a significant step in right direction in formulating the
foundational implications and principle dynamics for a wide range of
adaptive systems. The improved knowledge in the applicability of com-
putation for the testing of models based on these theories has proved
to be highly insightful. The modern development of neural simulation
and embodied systems allows for the complete implementation of truly
scientific models of complex behaviour. Following Ashby’s, Kohler’s
and Beer’s footsteps DiPaolo managed to successfully demonstrate the
applicability of their work in autonomous robotics. The present pa-
per is an attempt to push this momentum towards genuinely adaptive
agents a little further by emphasizing the ability of simple models to
accomplish adaptive tasks when presented with disruptions. Although
alternative experimentation may be required to agree with the obtained
results may be required, it seems possible that simple CTRNN mod-
els of plasticity can be effective for adaptive behaviour. Furthermore,
inspired by work on neural mass action and particularly Edelman’s
neural group selection theory, I introduce a preliminary and simplistic
neural model of statistical selection which proves to exhibit the ability
to self regulate in the face of sensory disruption to continue photo-
taxis. This approach, indicates that the combined action of simple
control units can lead to the emergence of complex behaviour. Finally,
I warn of the danger of misattributing sophisticated behaviour such as
adaptation to systems that may be pre-adapted to the experimental
conditions and their environment. These results, I hope, will motivate
further research in the domain of autonomous adaptive agency, while
maintaining careful attention to ambiguous conditions.
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